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LElTER TO THE EDITOR 

Low-temperature behaviour of the two-dimensional Coulomb 
gas 

C Deutsch 
Laboratoire de Physique des Plasmast, Universitt de Paris-Sud, Centre d’Orsay, 91405 
Orsay, France 

Received 23 February 1977 

Abstract. The two-dimensional Coulomb gas exhibits a non-zero long-range ‘atom-atom’ 
interaction in the T+O limit. 

The two-dimensional two-component Coulomb gas of classical point-like particles 
interacting through the Coulomb potential 4(rjj) = -eiej In rij (Hauge and Hemmer 
1971, Deutsch and Lavaud 1974) experiences a sudden collapse into a nearly perfect 
gas of neutral pairs of like charges at the critical temperature T, = e2/2kB with e = lej,./. 
Such a phenomenon is observed through the diverging trend of the 2 N  canonical 
partition function in the T +  limit, as well as through the two-body hydrogen-like 
Slater sum approaching infinity when T + C  (Atabek er a1 1974). The associated 
change of ionization stage is of a very fundamental significance in view of the numerous 
isomorphisms of the two-dimensional Coulomb gas with exact solvable models in 
plasma physics, solid state physics, and constructive quantum field theory (see for 
instance Frohlich 1976, for a thorough discussion of this point of view). Also, a recent 
unification of all the one-component plasma models with respect to the space dimen- 
sionality v (Deutsch 1976) allows for a systematic investigation of the dissociation- 
recombination catastrophe in the three-dimensional real matter plasma. 

These preliminary remarks explain that here we pay special attention to the possibly 
non-zero residual long-range interaction between neutral pairs when T < T,. This 
investigation is also necessary to assert the validity of the molecular approximation (MA) 
as a possible universal low-temperature picture for two-component plasma ther- 
modynamics, valid at all dimensionality. 

Therefore, we address ourselves to the two-dimensional extension of the standard 
derivation of the long-range residual interactions between neutral pairs in their ground 
states. The classical perturbation function which we are seeking is the mutual potential 
energy of two neutral molecules with ‘nuclei’ separated by a distance R, as a series of 
inverse powers of R. The potential &at a point P ( r )  produced by a positive charge at 0 
and a negative charge at rl is 4+ + 4-, and may, if we suppose r > rl ,  be developed in a 
Taylor series as 

(1) 
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specialized to v = 2. If we are not interested in interactions due to poles of higher order 
than quadrupoles, we need not consider more terms than those written down. Using, 
for the present, the convention of summing over like indices and putting x ’, x2, x 3  for 
x, y, z we may write 

Now placing another ‘H atom’ with its ‘proton’ at P and its ‘electron’ at r2 relative to P, 
the mutual interaction of the two becomes, again by a Taylor expansion in which the 
first three terms are retained, 

On account of the previous equation, the first term in the square brackets describes 
the dipoledipole interaction, the second the dipole-quadppole action and the third 
the quadrupole-quadrupole action. Putting x = R ,  and then placing the x axis along R ,  
we obtain (x = R ,  y = 0) the desired classical two-dimensional energy expression 

e 2  e’ 
V2(R) = &X1X2 - Y 1Y2) +$XlX$ -x*x: + 2Y 1y2(x1 -x2)1 

The same procedure applied to the one-dimensional interaction +(‘)(x) = -qiqjIxjj I 
gives zero immediately, thus explaining the striking success of the MA for the one- 
dimensional Coulomb gas (Lenard 1962, Prager 1963). The above v = 2 result exhibits 
a very small long-range residual interaction, in accord with the popular three- 
dimensional result (Margenau 1931). The MA displayed in this work may be given a 
quantitative measure by comparing the wave mechanical mutual energy of two ‘H 
atoms’ in the ground state (characterized by a subscript 0) with respect to the first 
excitation energy. Generalizing the standard three-dimensional second-order calcula- 
tion, which neglects exchange degeneracy and spin, the wavefunction for the unper- 
turbed system may be written q0(l) t,b0(2) where each q0 is the H wavefunction for the 
lowest state and the arguments are ‘electron’ coordinates referred to the separate nuclei 
as origins. The first-order perturbation energy is the average of V, over the space of the 
electrons, taken with the weighting function $A( 1) &2). This clearly vanishes for v = 2 
and 3 on account of the spherical symmetry of the latter and also by cancellation of the 
remaining terms. In both cases, the required mutual energy may be given the standard 
second-order form 

where Ea is the energy of one H atom in the state a. Terms with vanishing 
denominators are excluded from the summation, and Voo,us is defined by 

(6)  VOO,,S = I40(1)40(2)V(l. 2)qa(l)4@(2) dT1. 
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The products t,b& satisfy the conditions of completeness and orthogonality as do 
the I) functions singly. In both cases we have a negative A 2 E  corresponding to the 
attractive forces-dA2E/aR with A 2 E  - R-4 and R-6 respectively. For v = 3, this 
comes out from >Eo with Eo < 0 and E,,, < 0 (positive E,,, are left out), while in 
two dimensions this arises from the numerical analysis of the ‘H atom’, yielding 
Eo - E, -E, < 0. Nevertheless, considerable differences appear in the quantitative 
determination of A2E.  In two dimensions 

with 

A,, = X O J O B  - Y O , Y O ~  = A,, 

B,, = X O P  (X2)o, + 2(XY )oaYo, 

cap = c,, = ( r 2 ) O a  ( r2 lop - 3(x  (x2 )op  - (Y (Y ’)os + ~ ( X Y  )on (XY )op- 

I Voo,pp 1’ can be computed very simply if we remember that the sum over differences like 
A,,B,, -A,,B,, and B&, - BapCuS is zero. We may interchange at liberty indices 
of summation in each term, so we get (G,, = $(Bf ,  + Bi,)) 

Every wavefunction occurring here may be written 

A matrix element such as ( x ’ ) ~ ~  has 

A good approximation to equation (8) may be obtained by retaining the first excited 
state terms (E,,, increases steadily up to a), i.e. 

+. . .) GI 1 
2 

A 2 E  -5 ( + G1o + 
R 4  E o - E I  2Eo-2E1 

where 0 and 1 respectively denote the ground state (0,O) and the superposition 
((a, 1) + (1 ,O)  + (1, 1) + (0,2) + . . . + (0, n)) of excited states with nearly equal energy. 
Performing the &average in the required matrix element shows that AOP = APO = 0, all 
P. Also Col = Clo = A l l  = BIl = Cll = A l Z  =Az1 = 0. Hence Gol = GI1 = 0, while 
Glo = B&/2R2, so that A2E - 103/R6 in two-dimensional units. 

Therefore the residual correction to the MA is relatively much smaller in two 
dimensions, when compared to the ordinary Van der Waals interaction for Y = 3 (-R-‘ 
relative to R in place of In R). So, we may risk the very reasonable conjecture that the 
given corrections to the MA increase steadily with dimensionality. The above results 
show that the MA, although a very accurate zero-order approximation, is not rigorously 
exact in the small-T range. The very small ‘atom-atom’ interactions remain completely 
negligible with respect to the diverging ‘electron-proton’ Slater sum in the vicinity of T,. 
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